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Abstract

Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to
be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The
moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential
equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consis-
tently specified by parameters which are functions of the boundary values of the solution. The moment equations
can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these
moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time
with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic the-
ory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a
set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with
linear boundary conditions – with additional algebraic constraints on the auxiliary parameters; (iii) a careful combi-
nation of two Newton’s iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton’s
iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining
the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear
convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving
the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the
moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-
grained dynamical properties of integrate-and-fire neuronal networks.
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1. Introduction

Neuronal networks with statistically homogeneous couplings, such as all-to-all couplings with or without
synaptic failures, have served as protypical theoretical models for providing basic insight into the fascinating
network dynamics of large numbers of neurons in the brain. Applications of fundamental concepts and the-
oretical tools from nonequilibrium statistical physics to this type of neuronal network dynamics have proven
to be quite fruitful. Recently, starting with ‘‘microscopic’’ networks of homogeneously coupled, conductance-
based integrate-and-fire (I&F) neurons, (1 + 1)-dimensional moment equations have been derived via the
maximum-entropy principle (without any new parameters introduced) from a (2 + 1)-dimensional Boltz-
mann-like kinetic equation that governs the evolution of a one-particle (i.e., one-neuron) probability density
function (pdf) [1–3]. The approach is reminiscent of derivations of hydrodynamic equations from the Boltz-
mann equation for molecular motion in fluids [4,5]. This closure theory provides a coarse-grained theoretical
framework for describing the statistics of a neuronal network of conductance-based integrate-and-fire neu-
rons. Importantly, in contrast to the mean-field approach [6–8], it can capture many of the features of inte-
grate-and-fire networks, such as fluctuation effects when these networks are within a fluctuation-dominated
regime. For example, the moment equations can consistently describe intrinsic dynamic synaptic fluctuations
arising from network interactions. Specifically, the kinetic moment equations can accurately describe the
dynamic evolution of firing rate and voltage distributions for a neuronal network where the mean in the input
to the network is not sufficient to cause any firing events but the fluctuations in the input can. The kinetic the-
ory with its associated closures has been demonstrated to be a powerful approach [1] in that it can serve as (i)
an analytical tool for examining the coarse-grained network dynamics, (ii) a computational tool for efficiently
evaluating statistical information of integrate-and-fire neuronal networks and (iii) a useful theoretical basis for
constructing coarse-grained sub-networks within a larger heterogeneously structured integrate-and-fire net-
work [9], such that the entire system can be described by a kinetic theory of interacting populations of
coarse-grained subsystems, each of which contains neurons with similar connectivity and response properties.

In this paper, we present numerical methods for efficiently and accurately solving the moment equations
derived from the kinetic theory for neuronal network dynamics. The moment equations themselves are
(1 + 1)-dimensional nonlinear partial differential equations (PDE), which are self-consistently specified by
parameters that are functions of the boundary values of the solution on a bounded domain, with nonlinear

boundary conditions. Our numerical method for solving these equations has three basic ingredients. The first
step is to discretize time and apply an implicit Euler method within a spectral deferred correction framework
[10–14]. This process reduces the PDE of the closure theory to a sequence of boundary value problems (BVPs)
with nonlinear boundary conditions. The second step is to introduce auxiliary parameters which recast the
original BVPs with nonlinear boundary conditions as BVPs with linear boundary conditions but with addi-
tional algebraic constraints on the auxiliary parameters. The third step is to actually determine the solution
to each boundary value problem as well as the corresponding (constrained) auxiliary parameters using a mod-
ified version of Newton’s method.

Each main step within our numerical algorithm has distinct computational advantages. First, discretizing in
time (without discretizing in space) allows us to naturally incorporate the correct boundary conditions into
our scheme with ease. These nonlinear boundary conditions (of the kinetic equations) are difficult to encap-
sulate correctly using standard finite difference schemes, which discretize both space and time simultaneously.
Second, the use of the implicit Euler method avoids the restrictive CFL conditions associated with explicit
time-stepping (since the ‘‘wave-speeds’’ associated with the moment equations can be quite large, especially
when the voltage distribution becomes small (see below)), while the spectral deferred correction framework
allows our algorithm to remain accurate even when taking large numerical time-steps (Dt � 1 ms even when
the smallest time-scale of the moment equations is �0.5 ms). Third, the introduction of auxiliary parameters
linearizes the boundary conditions of each BVP, and allows us to employ the fast spectral integral methods of
[15,16], which use a divide-and-conquer strategy to adaptively discretize space as necessary and generate a
highly accurate differentiable solution for each linear BVP. Finally, at each time-step, a careful choice of New-
ton’s method in enforcing the associated algebraic constraints related to each BVP allows us to determine the
correct parameters with a quadratic error rate. In contrast, a simple fixed-point iteration has only a linear con-
vergence in error rate, as will be seen below.
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The most practicable implementation of our algorithm involves one pass of spectral deferred correction
(which yields a formally second order accurate method, as well as an useable error estimate) with each sub-
step involving 2–3 iterates of Newton’s method for solving the BVP and associated algebraic constraints –
here, the relevant Jacobians need only be updated about once or twice every correction step. Using our
method, high relative accuracy (errors of 10�4 or less) can typically be achieved with large time-steps
(Dt � 0.5 ms).

The outline of the paper is as follows. In Section 2, the kinetic theory formulation for neuronal network
dynamics will be briefly reviewed. In Section 3, the basic implicit Euler scheme will be described, along with
the approach of Newton’s method for solving the algebraic constraint associated with each BVP. In Section 4,
the spectral deferred correction framework will be detailed, which provides a systematic way of improving the
accuracy of the initial approximate solution. In Section 5, numerical examples are presented to illustrate the
convergence rate and efficiency of our numerical methods, and to demonstrate the efficacy of our algorithm for
networks that operate in a fluctuation-dominated regime. There, we also provide a simple geometric construc-
tion underlying the quadratic convergence of our combination of Newton’s schemes. In Section 6, we present
our conclusions.
2. Kinetic theory

To motivate, we briefly review the kinetic theory formulation for neuronal network dynamics [1,3,2]. For
conceptual simplicity, we consider an all-to-all coupled network of N excitatory integrate-and-fire neurons
[17]. The ith model neuron’s state is determined by its membrane voltage Vi(t) and excitatory conductance
Gi(t). Their dynamics evolve according to the integrate-and-fire equations:
sv

d

dt
V iðtÞ ¼ �ðV iðtÞ � �rÞ � GiðtÞðV iðtÞ � �EÞ; ð1aÞ

sg
d

dt
GiðtÞ ¼ �GiðtÞ þ f

X
k

dðt � T ext
i;k Þ þ

S
N

X
j;k

dðt � T j;kÞ; ð1bÞ
where sv and sg are the decay time constants for the voltage and conductance, respectively. The voltage evolves
continuously until it crosses the threshold �h, at which point it resets to the reset voltage �r and the time at
which it crosses �h is recorded as the firing (spiking) time of the neuron. (From physiology, typical values
are �r = �65 mV, �h = �55 mV and �E = 0 mV. We rescale voltage such that �r = 0, �h = 1, and the excitatory
reversal potential �E ¼ 14

3
in our rescaled units [18].) Physiologically, when a neuron fires, it emits a spike which

affects the conductance of all the neurons in the network. Here, the conductance Gi has a jump of size f/sg

upon receiving a spike from the feedforward (external) input, as signified by dðt � T ext
i;k Þ, where T ext

i;k is the
kth spike in the feedforward (external) input to the ith neuron. Similarly, Gi has a jump of size S/(Nsg) upon
receiving a spike from a neuron in the network, as signified by d(t � Tj, k), where the times Tj, k record the kth
spike of the jth neuron in the network. The parameters f and S determine the size of conductance increase
associated with the spike from the feedforward input and from other neurons in the network, respectively.
S/N describes the strength of network couplings and the factor 1/N ensures that there is a well-defined net-
work coupling in the limit of N!1.

For a fixed neuron j, the output spike statistics of {Tj, k} is, in general, not Poisson. However, the input to
the ith neuron is a spike train summed over output spike trains from many neurons in the network. If we
assume that each neuronal firing event has a very low rate and is statistically independent from the other neu-
rons in the network, then the spike train obtained by summing over a large number of output spike trains of
neurons in the network asymptotically tends to be a Poisson spike process [19]. Therefore, it can be assumed
that the input spike train summed from all other neurons to the ith neuron is Poisson with rate Nm(t), where
m(t) is the population-averaged firing rate per neuron. Further, it can be assumed that the feedforward spikes
are described by a Poisson process with rate m. With these assumptions, a (2 + 1)-dimensional Boltzmann-like
kinetic equation governing the evolution of a one-particle (i.e., one neuron) probability distribution function
q(v,g, t) can be derived [2]:
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otqðv; g; tÞ ¼ ov

v� �r

sv

� �
qðv; g; tÞ þ g

v� �E

sv

� �
qðv; g; tÞ

� �
þ og g

1

sg

qðv; g; tÞ
� �

þ m q v; g � f
sg

; t
� �

� q v; g; tÞð � þ Nm q v; g � S
Nsg

; t
� �

� qðv; g; tÞ
� �

;

�
ð2Þ
where q(v,g, t)dvdg is the probability of finding a neuron whose voltage is in (v,v + dv) and whose conduc-
tance is in (g,g + dg) at time t. If the jumps f and S/N are small, a Taylor expansion yields a diffusion approx-
imation of Eq. (2),
otqðv; g; tÞ ¼ ov

v� �r

sv

� �
qðv; g; tÞ þ g

v� �E

sv

� �
qðv; g; tÞ

� �
þ og g

1

sg

qðv; g; tÞ
� �

þ m
sg

�f ogqðv; g; tÞ þ
f 2

2sg

o2
gqðv; g; tÞ

� �
þ Nm

sg

� S
N

ogqðv; g; tÞ þ
S2

2N 2sg

o2
gqðv; g; tÞ

� �
;

which can be rewritten as
otqðv; g; tÞ ¼ ov

v� �r

sv

� �
qðv; g; tÞ þ g

v� �E

sv

� �
qðv; g; tÞ

� �
þ 1

sg

og½ðg � �gÞqðv; g; tÞ þ ĝogqðv; g; tÞ� ð3Þ
with
�g ¼ f mþ Sm; ð4aÞ

ĝ ¼ 1

2sg

f 2mþ S2m
N

� �
: ð4bÞ
Eq. (3) expresses the conservation of probability. The flux along the v-direction is
J V ðv; g; tÞ ¼ �
v� �r

sv

� �
þ g

v� �E

sv

� �� �
qðv; g; tÞ;
and the flux along the g-direction is
J Gðv; g; tÞ ¼ �
1

sg

½ðg � �gÞqðv; g; tÞ þ ĝogqðv; g; tÞ�:
We have the boundary condition
J V ð�h; g; tÞ ¼ J V ð�r; g; tÞ; ð5Þ

reflecting that neurons crossing �h have just fired, and all re-enter through the reset voltage. The firing rate (m
in our model) is one of the most important quantities measured in physiological experiments to describe neu-
ronal network properties. The dynamics of the network (1) is characterized by m(t) as determined by the total
probability flux across the threshold �h regardless of the values of conductance, i.e.,
mðtÞ ¼
Z

J V ð�h; g; tÞdg: ð6Þ
Thus, for a given q(v,g, t), we can determine the firing rate. However, Eq. (3) depends on the parameters �gðtÞ
and ĝðtÞ, which are functions of m(t), which, in turn, depends on the boundary value of q(�h,g, t) through
JV(�h,g, t). Therefore, Eq. (3) is a nonlinear (2 + 1)-dimensional equation.

Clearly, analytical insights and computational advantage can be achieved if the (2 + 1)-dimensional
dynamics [Eq. (3)] can be reduced to a (1 + 1)-dimensional effective dynamics. Now we sketch this reduction
to (1 + 1)-dimensional moment equations for the integrate-and-fire neuronal network dynamics.

Integration of Eq. (3) with respect to v yields,
otq
ðgÞðgÞ ¼ og

1

sg

½ðg � �gÞ þ ĝog�qðgÞðgÞ
� �

ð7Þ
with qðgÞðgÞ ¼
R �h
�r

qðv; g; tÞdv. Defining the zeroth conductance moment
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qðv; tÞ ¼
Z 1

0

qðv; g; tÞdg;
i.e., the voltage probability density function, and the moments
Xðv; tÞ ¼
Z 1

0

gqðv; g; tÞdg; Yðv; tÞ ¼
Z 1

0

g2qðv; g; tÞdg; . . . ;
it can be shown that Eq. (3) generates an infinite hierarchy of equations governing the evolution of moments.
The first and second equations in this hierarchy are
otqðv; tÞ ¼ ov
v� �r

sv

� �
qðv; tÞ þ v� �E

sv

� �
Xðv; tÞ

� �
; ð8Þ

otXðv; tÞ ¼ ov

v� �r

sv

� �
Xðv; tÞ þ v� �E

sv

� �
Yðv; tÞ

� �
� 1

sg

Xðv; tÞ � �gqðv; tÞ½ �: ð9Þ
Note that, in this hierarchy, the evolution of Xðv; tÞ depends on the evolution of Yðv; tÞ (as seen in Eq. (9)), i.e.,
Eqs. (8) and (9) are not closed with respect to q(v, t) and Xðv; tÞ. We need to address the closure issues, namely,
how to reduce this hierarchy to a closed effective dynamics that involve only lower order moments. Based on
the maximum-entropy principle, a closure condition can be derived [3]:
Yðv; tÞ ¼ X2ðv; tÞ
qðv; tÞ þ ĝqðv; tÞ: ð10Þ
Under this closure (10), Eq. (3) leads to closed equations with respect to q(v, t) and Xðv; tÞ, which is a conser-
vation law with the following form:
otqðv; tÞ ¼ �ovJqðv; tÞ; ð11aÞ

otXðv; tÞ ¼ �ovJXðv; tÞ � 1

sg

½Xðv; tÞ � �gqðv; tÞ� ð11bÞ
with
Jqðv; tÞ ¼ � v� �r

sv

� �
qðv; tÞ þ v� �E

sv

� �
Xðv; tÞ

� �
;

JXðv; tÞ ¼ � v� �r

sv

� �
Xðv; tÞ þ v� �E

sv

� �
ĝqðv; tÞ þXðv; tÞ2

qðv; tÞ

 !" #
:

Eq. (11) constitute the closed moment equations in kinetic theory of the neuronal network dynamics (1). The
population-averaged firing rate per neuron in the system is determined via Eq. (6) [1,2]:
mðtÞ ¼ Jqð�h; tÞ ¼ �
�h � �r

sv

� �
qð�h; tÞ þ

�h � �E

sv

� �
Xð�h; tÞ

� �
: ð12Þ
The boundary conditions for this conservation law can be derived from Eq. (5) to yield
Jqð�h; tÞ ¼ Jqð�r; tÞ;
JXð�h; tÞ ¼ JXð�r; tÞ:
It is convenient to define
aðvÞ � v� �r

sv

� �
and bðvÞ � v� �E

sv

� �
;

c � ova ¼ ovb ¼ 1

sv

;

and to use the subscripts r, h to refer to function evaluation at �r, �h, respectively (e.g., /r ¼ /ðvÞjv¼�r ¼ /ð�rÞ).
With this notation we can cast the conservation law as
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otq ¼ ov½aqþ bX�; ð13aÞ

otX ¼ ov aXþ b ĝqþX2

q

� �� �
� 1

sg

½X� �gq� ð13bÞ
with boundary conditions
ar br

brĝ ar þ brlr

� �
�

qr

Xr

� �
�

ah bh

bhĝ ah þ bhlh

� �
�

qh

Xh

� �
¼

0

0

� �
; ð14Þ
where
lr ¼
Xr

qr

and lh ¼
Xh

qh

: ð15Þ
Note that the nonlinear PDEs (11) of the kinetic theory depend on the firing rate parameter m, which is a
function of the boundary value of the solution (Eq. (12)). In addition, the boundary conditions (14) are
nonlinear (Eq. (15)) and depend on the firing rate m via ĝ. We remark that, in certain settings, for exam-
ple, if the initial data is compactly supported within a sufficiently small region in the interior of [�r, �h],
then the boundary conditions are automatically satisfied, Eq. (13) reduces to a hyperbolic system (with
a source term). It can easily be seen that the wave speeds in this situation can become arbitrarily large
when q� X. This indicates that the convective term JX in Eq. (11) gives rise to stiff dynamics in general
and is difficult to handle with a simple explicit scheme. We further note that in the work of [1,2], a further
reduction to a Fokker–Planck equation in the limit of sg! 0 can be achieved [20–22]. However, we will
focus on the numerical methods of solving the nonlinear PDE (13) with boundary conditions (14) in this
work.

3. Basic first order method and Newton’s method for the algebraic constraint

Our goal is to numerically approximate the solution of the nonlinear PDE (13) with boundary conditions
(14). At a first glance, Eq. (13) might appear similar to a hyperbolic conservation law with stiff relaxation
terms. Efficient splitting methods for accurately resolving these types of stiff conservation laws have been dis-
cussed in [23–26]. These splitting methods treat parts of the PDE explicitly, and parts of the PDE implicitly,
while ensuring that as the stiffness parameter increases, the discrete numerical method converges to a numer-
ical method which handles the appropriate limiting dissipative PDE (e.g., some sort of diffusion equation). We
have implemented a hybrid upwind–downwind numerical method with a similar flavor (i.e., as sg! 0, the
numerical method converged to a stable scheme for solving the diffusive, i.e., Fokker–Planck, equation derived
from Eq. (13) in the sg! 0 limit) [2]. However, both the methods of [23–26] as well as the hybrid upwind–
downwind scheme [2] face two obstacles when tackling Eqs. (13) and (14): (i) the boundary conditions (14)
are difficult to correctly incorporate with any sort of finite difference method, and the transient dynamics
of PDE (13) are critically dependent on the details of the boundary conditions in our experience of solving
these equations; (ii) in a low firing rate regime with moderate sg and small f, the system (13) and (14) can
develop a very sharp spatial boundary layer near either �h or �r. Resolving this layer with a uniform spatial
grid (or, indeed, any apriori spatial grid) is impractical. To circumvent these two issues, we discretize time first,
and apply the implicit Euler scheme to turn the PDE into a sequence, in time, of boundary value problems
(BVPs). The implicit Euler method is only first order, but allows us to naturally and conveniently incorporate
the boundary conditions (Eq. (14)) and to take relatively large time-steps (Dt � 1 ms) (the issue of accuracy
will be addressed below). In addition, this approach allows us to adaptively discretize space as necessary when
solving the individual BVPs, and thus resolve spatial boundary layers as they manifest. We remark that by
viewing m, lr, lh as auxiliary parameters, we can treat the nonlinear boundary conditions (14) as linear bound-
ary conditions for fixed values of m, lr, lh, while simultaneously fully specifying the PDE (13) with this fixed,
explicit auxiliary parameter m. Upon this ‘‘linearizaton,’’ we can readily solve Eqs. (13) and (14) using existing
methods, such as spectral integral methods [15,16], for solving standard one-dimensional BVPs with linear

boundary conditions. The methods of [15,16] are advantageous because they efficiently and adaptively discret-
ize space. In particular, they can easily resolve aforementioned boundary layers with a minimal computational
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overhead. After all the treatment, the problem reduces to solving Eq. (13) with auxiliary parameters and simul-
taneously finding the correct parameters m, lr, lh as solutions of the algebraic constraint (Eqs. (12) and (15)).

For clarity of notation, we define
Y ðv; tÞ ¼
qðv; tÞ
Xðv; tÞ

� �
;

W ðtÞ ¼ fmðtÞ; lrðtÞ; lhðtÞg;

F ðW ; Y ; ovY Þ ¼
cqþ cXþ aovqþ bovX

c Xþ ĝqþ X2

q

� 	
þ aovXþ bĝovqþ 2b XovX

q

� 	
� b X2

q2

� 	
ovq� 1

sg
½X� �gq�

" #
;

AðW ; tÞ ¼
ar br

brĝðtÞ ar þ brlrðtÞ

� �
;

CðW ; tÞ ¼ �
ah bh

bhĝðtÞ ah þ bhlhðtÞ

� �
:

With this notation, the original PDE (13) can be rewritten as
otY ðv; tÞ ¼ F ðW ðtÞ; Y ðv; tÞ; ovY ðv; tÞÞ; ð16Þ

with boundary conditions
AðW ðtÞ; tÞY ð�r; tÞ þ CðW ðtÞ; tÞY ð�h; tÞ ¼ 0: ð17Þ

As mentioned above, to solve Eqs. (16) and (17), we first discretize time as t0 < t1 < � � � < tF, with time-steps
Dn = tn � tn�1, and write the numerical solution Y(tn),W(tn), as Yn,Wn. Using the implicit Euler scheme, each
time-step becomes a BVP which can be formally written as
Y n � Y n�1 ¼ DnF ðW n; Y n; ovY nÞ ð18Þ

with boundary conditions
AðW n; tnÞY n
r þ CðW n; tnÞY n

h ¼ 0: ð19Þ

Note that Eq. (18) with boundary conditions (19) cannot be straightforwardly solved using standard BVP
solvers, since the parameter set Wn is a function of the desired solution Yn.
3.1. Newton’s method for BVP

We now outline a Newton’s method approach to solve Eqs. (18) and (19). First, we view W = {m,lr,lh} as
auxiliary fixed parameters, computed via Eqs. (12) and (15) from the boundary values of Yn. Thus, with the
fixed parameters Wn, the nonlinear boundary conditions (14) are turned into linear boundary conditions and
the BVP (18) is explicitly specified since Wn in Eq. (18) is no longer a function of Yn. Later, we address the
question of how to obtain a consistent set of auxiliary parameters, i.e., those consistent with the solution Yn.

We begin with Yn,[0], which denotes the old solution from the previous step Yn�1, and use it as the 0th
approximation to the new solution at the current step. The parameter Wn,[0] is computed directly using the
solution Yn,[0] via Eqs. (12) and (15).

By denoting the first Newton’s iterate as Yn,[1], we apply one step of Newton’s method to the BVP (Eqs. (18)
and (19)) in an attempt to solve for Yn:
½I � DnHðW n;½0�; Y n;½0�; ovY n;½0�Þ � DnKðW n;½0�; Y n;½0�; ovY n;½0�Þov� � ½Y n;½1� � Y n;½0��
¼ DnF ðW n;½0�; Y n;½0�; ovY n;½0�Þ þ Y n�1 � Y n;½0�; ð20Þ
with corresponding boundary conditions
AðW n;½0�; tnÞY n;½1�
r þ CðW n;½0�; tnÞY n;½1�

h ¼ 0; ð21Þ
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where we have defined
K ¼ oovY F ¼
a b

bĝ � b X2

q2 aþ 2b X
q

" #
;

H ¼ oY F ¼
c c

H 21 H 22

� �

with
H 21 ¼ cĝ � c
X2

q2
� 2b

XovX

q2
þ 2b

X2

q3

� �
ovqþ

�g
sg

;

H 22 ¼ cþ 2c
X

q
þ 2b

ovX

q
� 2b

X

q2

� �
ovq�

1

sg

:

Note that H and K both depend on the parameters W through �g and ĝ (which are functions of m (Eq. (4)). For
fixed parameters W, Eqs. (20) and (21) constitute a linear BVP with linear boundary conditions, therefore,
they can be solved efficiently using the domain splitting methods of [16].

Before we address the issue of how to incorporate consistent parameters Wn, we first recast BVP (20) and
(21) to obtain a compact expression for Yn,[1]. For ease of notation, we define the linear operators
L1ðw; yÞ � ½I � DnHðw; y; ovyÞ � DnKðw; y; ovyÞov�;
L2ðwÞ � Aðw; tnÞ � jv¼�r

þ Cðw; tnÞ � jv¼�h ;
where the linear operator L1 represents the ordinary differential operator (see Eq. (20)) and the linear operator
L2 represents the boundary conditions (see Eq. (21)). Therefore, Eqs. (20) and (21) can be cast as
L1ðW n;½0�; Y n;½0�Þ � Y n;½1� ¼ R1ðW n;½0�; Y n;½0�Þ; ð22aÞ
L2ðW n;½0�Þ � Y n;½1� ¼ R2 ð22bÞ
with
R1ðW n;½0�; Y n;½0�Þ � DnF ðW n;½0�; Y n;½0�; ovY n;½0�Þ þ Y n�1 � Y n;½0� þ L1ðW n;½0�; Y n;½0�Þ � Y n;½0�;

R2 � 0:
By defining L(w,y) ” [L1(w,y),L2(w)]T, Eq. (22) combines into a compact form:
LðW n;½0�; Y n;½0�Þ � Y n;½1� ¼ RðW n;½0�; Y n;½0�Þ; ð23Þ

where the right-hand side R(w,y) ” [R1(w,y), R2]T. Now the Newton iterate Yn,[1] is simply the solution of
Y n;½1� ¼ L�1ðW n;½0�; Y n;½0�Þ � RðW n;½0�; Y n;½0�Þ: ð24Þ
3.2. Algebraic constraint

Next, we discuss two methods to deal with how to solve for the correct parameters Wn – i.e., those consis-
tent with the solution Yn. Clearly, the consistent parameters Wn are determined by solving the algebraic
constraint:
GðW n; Y nÞ ¼

mn þ arqn
r þ brX

n
r

ln
r �

Xn
r

qn
r

ln
h �

Xn
h

qn

2664
3775 ¼ 0: ð25Þ
h
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3.2.1. Fixed-point iteration

As a first attempt, we employ a basic fixed-point iteration to obtain a parameter set Wn consistent with the
solution Yn. Each BVP (24) with these linear boundary conditions is solved using the fast divide-and-conquer
strategy of [16], which automatically discretizes space adaptively, and efficiently generates a highly accurate
differentiable solution. We repeatedly update the parameter values using the algebraic relations (Eqs. (12)
and (15)), and repeat Newton’s iteration until the solution is consistent with the firing rate m, and other
parameters {lr,lh} at each time-step. The fixed-point iteration can be simply illustrated with the following
pseudocode:

	 Set m = 0, maximum iteration mmax and tolerance e.
	 Evaluate Wn,[0] using the solution for the last step Yn�1 via Eqs. (12) and (15).
	 do
{
set m: = m + 1.
Solve the linear BVP (24) to obtain:

Yn,[m] = L�1(Wn,[m�1],Yn,[m�1]) Æ R(Wn,[m�1],Yn,[m�1]).
Evaluate Wn,[v] using the solution Yn,[m] via Eqs. (12) and (15).
}

while (m 6 mmax) and (|Wn,[m] �Wn,[m�1]| P e).
	 Set Yn,[m],Wn,[m] as the solution Yn,Wn for the current step.

However, as will be described in Section 5, this fixed-point iterative process only converges linearly in the
parameter values, and can be time-consuming if high accuracy is desired.

Incidentally, we point out that the above fixed-point iteration with no iterations (i.e., mmax = 0) can be
viewed as a fully explicit treatment of the parameter W. This method performs poorly, unless the time-step
is very small, since it is essentially an explicit method for time-evolution.
3.2.2. Newton’s method for the algebraic constraint
We now outline an approach based on Newton’s method for the algebraic constraint (25) on the auxiliary

parameters. As will be seen below, this approach yields quadratic convergence for the parameter values, and is
therefore more efficient than the fixed-point iteration.

Since the correct choice of parameters Wn are the root of Eq. (25), at first glance, it would appear to be
natural to compute Wn,[1] directly by using the function values of Yn,[1] to iteratively satisfy the algebraic con-
straint (as is precisely the case in fixed point iteration). However, in order to achieve a quadratic convergence
for parameters, we use, instead, the following procedure: First, under the Newton iterate (24), the algebraic
constraint (25) is replaced by the following associated constraint:
G½W n;L�1ðW n; Y n;½0�Þ � RðW n; Y n;½0�Þ� ¼ 0: ð26Þ

Then, a second Newton’s iterate is used to find the root Wn of Eq. (26) with its corresponding Newton step as
½oW GðW n;½0�; Y n;½1�Þ þ oY GðW n;½0�; Y n;½1�ÞoW Y n;½1�� � ½W n;½1� � W n;½0�� ¼ �GðW n;½0�; Y n;½1�Þ: ð27Þ

Suppose we have solved Eq. (27) to obtain Wn,[1] (details see below). Then, the iterative process for our prob-
lem proceeds by using this better approximation Wn,[1] to the parameter set to obtain a new solution Y n;½1� by
solving the BVP (23) to obtain
Y n;½1� ¼ L�1ðW n;½1�; Y n;½1�Þ � RðW n;½1�; Y n;½1�Þ: ð28Þ

In summary, a single iteration in our method consists of two Newton’s iterates for the linear BVP similar to
Eq. (23) with an interlacing Newton’s iterate for the algebraic constraint, e.g., Eq. (27). Then, using
ðW n;½1�; Y n;½1�Þ, we start the second iterate in our method to find the corresponding Yn,[2], then W n;½2�; Y n;½2�.
For example, Yn,[2] is determined via the BVP similar to Eq. (23), i.e.,
LðW n;½1�; Y n;½1�Þ � Y n;½2� ¼ RðW n;½1�; Y n;½1�Þ
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or
½I � DnHðW n;½1�; Y n;½1�; ovY n;½1�Þ � DnKðW n;½1�; Y n;½1�; ovY n;½1�Þov� � ½Y n;½2� � Y n;½1��
¼ DnF ðW n;½1�; Y n;½1�; ovY n;½1�Þ þ Y n�1 � Y n;½1�
with boundary conditions
AðW n;½1�; tnÞY n;½2�
r þ CðW n;½1�; tnÞY n;½2�

h ¼ 0
(compare with Eqs. (20) and (21)). We continue the iteration process (one step of Newton’s method for
obtaining Y (essentially Eq. (24)), one step for obtaining W (essentially Eq. (27)), and another step of New-
ton’s method for Y (again, essentially Eq. (24)) until the parameter constraint (Eq. (25)) is below a specified
tolerance (usually single digit precision 10�7). As will be demonstrated in Section 5, this process converges
much faster than fixed point iteration, and usually obtains consistent parameter values after only a few
iterations.

We emphasize that the above associated constraint (26) with its corresponding Newton iterate (27) is a cru-
cial construction for achieving quadratic convergence for parameters, as will be discussed below.

Evaluation of Wn,[1]: To complete, we now turn to discussion of the details of how to solve Eq. (27) to obtain
Wn,[1]. Note that Eq. (27) can be expanded as
1þ aromqn;½1�
r þ bromX

n;½1�
r arolr

qn;½1�
r þ brolr

Xn;½1�
r arolh

qn;½1�
r þ brolh

Xn;½1�
r

�om
X

n;½1�
r

qn;½1�
r

� 	
1� olr

X
n;½1�
r

qn;½1�
r

� 	
�olh

X
n;½1�
r

qn;½1�
r

� 	
�om

X
n;½1�
h

qn;½1�
h

� �
�olr

X
n;½1�
h

qn;½1�
h

� �
1� olh

X
n;½1�
h

qn;½1�
h

� �
266664

377775 �
mn;½1� � mn;½0�

ln;½1�
r � ln;½0�

r

ln;½1�
h � ln;½0�

h

264
375

¼ �

mn;½0� þ arqn;½1�
r þ brX

n;½1�
r

ln;½0�
r � X

n;½1�
r

qn;½1�
r

ln;½0�
h � X

n;½1�
h

qn;½1�
h

266664
377775:
Note that the various components of oWYn,[1] (e.g., omqn;½1�; . . . ; olh
Xn;½1�) can be computed by simply differen-

tiating Eq. (24) and using the identity
oW ½L�1� ¼ �L�1½oW L�L�1: ð29Þ

For example, the components of omYn,[1] can be computed as follows. First, using Eqs. (24) and (29), we obtain
omY n;½1� ¼ �L�1½omL�L�1Rþ L�1omR; ð30Þ

where L and R are all evaluated at (Wn,[0],Yn,[0]). Using Eq. (24), the right-hand side of Eq. (30) (denoted by
A) can be written as
A ¼ L�1½½�omL�L�1Rþ omR� ¼ L�1½½�omL�Y n;½1� þ omR�;

which is the solution to the linear BVP
L1½A� ¼ DnðomH þ omKovÞY n;½1� þ DnðomF � omHY n;½0� � omKovY n;½0�Þ ð31Þ

(where omH and omK are both evaluated at (Wn,[0],Yn,[0])) with boundary conditions
AðW n;½0�; tnÞAr þ CðW n;½0�; tnÞAh ¼ �
0 0

bromĝ 0

� �
Y n;½1�

r þ
0 0

bhomĝ 0

� �
Y n;½1�

h : ð32Þ
Once we solve this BVP (Eqs. (31) and (32)), we obtain omY n;½1� ¼A. The other components of oWYn,[1],
namely, olr

Y n;½1�, and olh
Y n;½1�, are computed similarly, but are slightly easier to evaluate since the operators

olr
L1, olh

L1, olr
R and olh

R are all zero, and the operators olr
L2 and olh

L2 only act on the boundary conditions.
Thus we only have to solve one BVP in each case.
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After the components of oWYn,[1] are all computed, the new parameter Wn,[1] can be obtained by solving
Eq. (27). Each step of Newton’s iteration for the parameters Wn,[m] requires the Jacobian oWYn,[m]. Evaluat-
ing this Jacobian requires the solution of three BVPs. This is somewhat costly, and the standard way to
minimize this cost is to simply keep using the old Jacobian oWYn,[0] until the iterations for W stop converg-
ing. Using this approach we only have to update (refresh) the Jacobian once in a while (about once per
time-step).

This completes the description of alternate Newton’s methods for solving the BVP along with the algebraic
constraint at each time-step.
4. Spectral deferred correction framework

In this section, we address the accuracy issue in numerically solving the kinetic moment equations for neu-
ronal network dynamics. Recall that we are trying to numerically approximate a solution to the PDE
otY ðv; tÞ ¼ F ðW ðtÞ; Y ðv; tÞ; ovY ðv; tÞÞ;
subject to boundary conditions
AðW ðtÞ; tÞY ð�r; tÞ þ CðW ðtÞ; tÞY ð�h; tÞ ¼ 0;
and constraints
GðW ðtÞ; Y ðtÞÞ ¼ 0:
Given initial conditions to this PDE at some initial time T0, the task is to approximate the exact solution
Y(v, t) and the exact parameter set W(t). The basic implicit Euler method (Eq. (18)) only produces an approx-
imate solution Yn of the original PDE (16) with boundary conditions (17), which is first order accurate in the
time-step Dt (regardless of how the constraint is solved, e.g., using Newton’s method or fixed point iteration).
Now we discuss how to improve the accuracy of this numerical solution by applying the implicit Euler method
within a spectral deferred correction framework [10–14].

We note that essentially the same spectral deferred correction scheme used in [13,14] can be applied here
with the following procedures:

1. First, a numerical method, such as those in Section 3, is selected to numerically solve the PDE (16) and (17),
whose exact solution is denoted by Y(v, t).

2. Once an approximate solution eY ðv; tÞ is obtained, we construct a PDE for the error eðv; tÞ ¼ Y ðv; tÞ�eY ðv; tÞ.
3. Using a numerical method (e.g. again using the method of Section 3), we solve this PDE to obtain an

approximation ~eðx; tÞ to the error.
4. The original approximation is updated by eY ðv; tÞ :¼ eY ðv; tÞ þ ~eðv; tÞ.
5. Return to step 2 and repeat as necessary.

We now explain this procedure for solving PDE (16) and (17) in more detail (closely following [13,14]).
Assuming that the exact solution (i.e., initial conditions) at time T0 is known, one can use the methods of Sec-
tion 3 to obtain a numerical solution Yn(v),Wn at a sequence of q time points {t1, . . . ,tn, . . . ,tq} within the time
interval [T0,T0 + DT]. These time points are chosen to be Chebyshev nodes within the time interval
[T0,T0 + DT], which will allow us to construct an accurate qth order polynomial interpolant eY ðv; tÞ; eW ðtÞ
through the points Yn(v),Wn [27]. Data about the approximate solution at these Chebyshev nodes will also
allow us to accurately compute time-wise integrals over the time interval [T0,T0 + DT] [27].

Using the interpolants eY ðv; tÞ; eW ðtÞ, the error in the solution is Zðv; tÞ ¼ Y ðv; tÞ � eY ðv; tÞ, and the error
in the parameters is X ðtÞ ¼ W ðtÞ � eW ðtÞ, where Y(v, t) and W(t) are the exact solution and the exact
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parameter set for the PDE (16) and (17). For Z(v, t) and X(t), a PDE can be formally constructed as
follows:
otZðv; tÞ ¼ otY ðv; tÞ � ot
eY ðv; tÞ ¼ F ½W ðtÞ; Y ðv; tÞ; ovY ðv; tÞ� � ot

eY ðv; tÞ
¼ F ½ eW ðtÞ þ X ðtÞ; eY ðv; tÞ þ Zðv; tÞ; ov

eY ðv; tÞ þ ovZðv; tÞ� � ot
eY ðv; tÞ

� oW F ð eW ðtÞ; eY ðv; tÞ; ov
eY ðv; tÞÞ � X ðtÞ þ oY F ð eW ðtÞ; eY ðv; tÞ; ov

eY ðv; tÞÞ � Zðv; tÞ
þ oovY F ð eW ðtÞ; eY ðv; tÞ; ov

eY ðv; tÞÞ � ovZðv; tÞ þ F ð eW ðtÞ; eY ðv; tÞ; ov
eY ðv; tÞÞ � ot

eY ðv; tÞ ð33Þ
with boundary conditions
Að eW ðtÞ þ X ðtÞ; tÞZð�r; tÞ þ Cð eW ðtÞ þ X ðtÞ; tÞZð�h; tÞ
¼ �Að eW ðtÞ þ X ðtÞ; tÞeY ð�r; tÞ � Cð eW ðtÞ þ X ðtÞ; tÞeY ð�h; tÞ: ð34Þ
In order to compute an approximate Zn(v),Xn to the error (in both the solution and the parameters) at the time
points {t1, . . . ,tn, . . . ,tq} within the time interval [T0,T0 + DT], we apply a version of implicit Euler to Eqs.
(33) and (34):
ZnðvÞ ¼ Zn�1ðvÞ þ Dn½ðoW F Þn � X n þ ðoY F ÞnZnðvÞ þ ðoovY F ÞnovZnðvÞ�

þ
Z tn

tn�1

½F ð eW ðtÞ; eY ðv; tÞ; ov
eY ðv; tÞÞ � ot

eY ðv; tÞ�dt ð35Þ
with boundary conditions
AðW n þ X n; tnÞZn
r þ CðW n þ X n; tnÞZn

h ¼ �AðW n þ X n; tnÞY n
r � CðW n þ X n; tnÞY n

h; ð36Þ
where we have defined
Dn ¼ tn � tn�1;

F n ¼ F ðW n; Y nðvÞ; ovY nðvÞÞ;
ðoW F Þn ¼ oW F ðW n; Y nðvÞ; ovY nðvÞÞ;
ðoY F Þn ¼ oY F ðW n; Y nðvÞ; ovY nðvÞÞ;
ðoovY F Þn ¼ oovY F ðW n; Y nðvÞ; ovY nðvÞÞ:
Note that under the appropriate Gaussian quadrature for the time nodes {t1, . . . ,tn, . . . ,tq} [27], in general,
Z tn

T 0

f ðtÞdt �
Xm

i¼1

wn;mf ðtmÞ;
where wn,m are the corresponding weights in the quadrature. Therefore, the integral in the second line of Eq.
(35) can be accurately approximated (to qth order accuracy) by using the previous solution values Yn(v), i.e.,
Z tn

tn�1

½F ð eW ðtÞ; eY ðv; tÞ; ov
eY ðv; tÞÞ � ot

eY ðv; tÞ�dt �
Xm

i¼1

ðwn;m � wn�1;mÞF m � ðeY n � eY n�1Þ; ð37Þ
which is completely known, i.e., does not depend on the error Zn,Xn.
Thus, Eqs. (35) and (36) constitute a boundary value problem with a form similar to Eqs. (18) and (19), and

which can be solved in a very similar manner (using either fixed point iteration or, preferably, Newton’s
method for solving the algebraic constraint as above). Once we obtain an approximation to the errors Zn,Xn

at the Chebyshev points {t1, . . . ,tn, . . . ,tq}, we can form Yn + Zn and Wn + Xn to update our approximate
solution. This process can be repeated as necessary, but the improvement in accuracy is limited by the ability
to compute the integral Eq. (37) accurately.
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5. Numerical examples

We illustrate the efficacy of the kinetic theory (Eqs. (13) and (14)), and the practicality of our numerical
methods with the following numerical examples.

5.1. Rate of convergence

First, we illustrate the efficiency of the Newton’s method as described in Section 3 for finding parameters
(e.g., firing rate) consistent with the numerical solution. We evolve the kinetic theory equations (Eqs. (13) and
(14)) with parameters
Fig. 1.
steps. I
indicat
iteratio
obtain
spectra
text) u
during
correct
Notice
contrib
N ¼ 100; sv ¼ 20 ms; sg ¼ 0:1 ms;

f ¼ 0:5; m ¼ 0:5 spikes=ms; S ¼ 0:125
ð38Þ
and initial conditions q0 ¼ 1=ð�h � �rÞ;X0 ¼ 0, for 16 ms with a variety of time-steps (DT = 0.0625–1 ms) and
measure the rates of convergence of the parameter values for each step. (In order to make Newton’s method
appreciably faster than fixed point iteration, we recompute the Jacobian of the parameter constraint once
every four time-steps (as opposed to every time-step).) Fig. 1A compares the correction size of Newton’s iter-
ates to the correction size of fixed point iterates (averaged over all time-steps). As is expected, the Newton’s
scheme converges much faster than fixed point iteration.

The reason that our Newton’s methods can achieve a quadratic convergence of error rate can be intuited
from a geometric construction as illustrated in Fig. 2. In Fig. 2, the two surfaces intersect along a curve passing
through the point x in the plane W�Y. The surface Z = B(W,Y) can be viewed as the surface associated with
the problem of finding roots of B(W,Y) = 0, which corresponds to the BVP (18) with the fixed auxiliary
parameter W, while the surface Z = G(W,Y) can be viewed as the surface associated with the problem of find-
ing roots of G(W,Y) = 0, which corresponds to the algebraic constraint (25). Therefore, the problem of finding
a consistent set of auxiliary parameters W which solve the BVP (18) with the boundary condition linearized by
the auxiliary parameterization, as discussed in Section 3.1, now becomes the problem of finding the common
root (W,Y) that solves both B(W,Y) = 0 and G(W,Y) = 0 simultaneously, i.e., finding the coordinates of the
point x, which is the intersection of the curve u 0u (i.e., B(W,Y) = 0) and the curve p 0p (i.e., G(W,Y) = 0).
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Error plots. (A): average relative L1 error in boundary data W as measured using a sample network (see text) over several time-
n all cases the m-component of W contributed the most to the error. Error is plotted as a function of iteration, with the dashed line
ing fixed-point iteration and the solid line indicating Newton’s Method. Newton’s method converges much faster than fixed-point
n. (B): average relative L1 error in boundary data W (solid lines) and average relative L2 error in probability q(v) (dashed lines)

ed using the implicit Euler scheme of Section 3 (data indicated by circles) and compared against the errors obtained using the
l deferred correction scheme of Section 4 (data indicated by squares). The methods are both tested on a specific sample network (see
sing a variety of time-steps. The errors are plotted as a function of the total number of boundary value problems that are solved
a millisecond of time-evolution, which is an indication of the total time taken by the numerical method. The spectral deferred
ion method is more accurate than the simple implicit Euler scheme (by about one extra digit for the same amount of operations).
that the L2 errors in q(v) are consistently two digits larger than the L1 errors in the W. Again, in all cases the m-component of W

uted the most to the parameter error.



Fig. 2. A schematic illustrating the spirit of the Newton’s scheme of Section 3. The curve uxu 0 corresponds to the nonlinear boundary
value problem Eq. (18) (with linear boundary conditions given by Eq. (19). The curve pxp 0 corresponds to the algebraic constraint relating
the solution Y to the boundary conditions W given by Eq. (25). The goal is to find the intersection point x = {Wperfect,Yperfect} of these two
curves. Assuming that our best guess for x is the point a = {W0,Y0}, the scheme of Section 3 uses one step of Newton’s iteration (Eq. (24))
to find the point b = {W0,Y1}, and then uses Newton’s method for the algebraic constraint (Eq. (27)) to find the updated
W1 2 h = {W1,Y

01}, and finally corrects once more (using Eq. (24) to find the point k ¼ fW 1; Y 1g. We can approach the point x

quadratically by repeating this entire procedure over and over again (see text for more details).
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The first Newton’s iterate (23) can be viewed as a Newton’s step here for solving B(W,Y) = 0 for a fixed
value of W: starting from the point a = (W[0],Y[0]), find the Newton’s iterate b = (W[0],Y[1]) along the Y-direc-
tion only. This point b corresponds to the solution (24). The solution (24) for all possible values of W[0] with a
given Y[0] yields Y[1](W[0]) as a function of W[0]. Geometrically, this corresponds to the locus (the curve f 0fbb 0)
of the Newton’s iterate, which is the set of the Newton iterates along the Y-direction for all possible values
W[0] for a given Y[0] – clearly, the point b is on this locus. By construction, the curve f 0fbb 0 deviates from
the true solution B(W,Y) = 0 in the Y-direction (i.e., with a fixed W) by an error of quadratic order in the
sense of Newton’s method. In this sense, we say that the point b is ‘‘quadratically’’ close to the curve
B(W,Y) = 0 along the Y-direction. If this construction is repeated starting from the points on the line h 0b

(i.e., varying W for the fixed Y[1]), then, a new locus of the Newton’s iterate is obtained, i.e., the curve k 0kgg 0

in Fig. 2. For example, the point g is the Newton’s iterate obtained by starting from the initial point
b = (W[0],Y[1]) along the Y-direction, and the point k is the Newton’s iterate obtained by starting from the
initial point h 0 = (W[1],Y[1]) along the Y-direction. (The meaning of W[1] will become clear momentarily,
W[1] can be viewed, at the moment, as just another parameter W used in the Newton’s step for a fixed
Y[1].) The curves thus constructed, f 0fbb 0, or k 0kgg 0, approach the true solution B(W,Y) = 0 with a quadratic
rate for a fixed W.

Next, we note that the curve f 0fbb 0 corresponds to the function Y[1] = Y[1](W[0]) and that the problem (26)
corresponds to solving G(W,Y[1](W)) = 0, whose root is the point f, which is the intersection between the curve
p 0xp (i.e., G(W,Y) = 0) and the curve f 0fbb 0. In addition, we note that the point f and the point x are ‘‘qua-
dratically’’ close since the point f is ‘‘quadratically’’ close to the curve u 0xu along the Y-direction. The New-
ton’s iterate (27) constructed for the problem (26) can now be viewed as the following geometric construction:
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First, the locus f 0fbb 0 is vertically lifted to the surface Z = G(W,Y) (For example, the portion fb of the locus is
vertically lifted to the curve fe on the surface Z = G(W,Y).) Then, a Newton’s iterate, which corresponds to
the Newton’s iterate (27), is used to find the point h ¼ ðW ½1�; Y 0½1�Þ, as an approximation to the point f. The
point h is the intersection with the (W,Y)-plane of the tangent to the curve fe at the point e, which is vertically
lifted from the point b. Therefore, the point h is quadratically close to the point f and the value of W[1] thus
obtained differs from the W-coordinate of the point f by a quadratic error in the sense of Newton’s method.
Since the points f and x are ‘‘quadratically’’ close, the point h is quadratically close to the point x. Incidentally,
by construction, the straight line connecting the point h and the point b is the tangent to the curve f 0fbb 0 at the
point b since the line segment bh is simply the projection of the tangent eh to the (W,Y)-plane.

One could simply compute Y
0[1] by evaluating all the derivatives at the point e along the curve fe, just as

what we have carried out for the evaluation of W[1] by using all possible derivatives at the point e along
the curve fe (see Section 3.2.2). Therefore, by iterating these two Newton’s steps, i.e., the construction of
a! b and b! h, a sequence of the points of the h-kind can be obtained, approaching the true solution
(i.e., the point x) with a quadratic rate. Then, the W-coordinates of these points possess a quadratic rate in
approaching the true value, i.e., the W-coordinate of the point x. Clearly, the curve Y[1] = Y[1](W) (f 0fbb 0) plays
an important role here, allowing us to construct or approximate the point f, which is quadratically close to x

and simultaneously satisfies G(W,Y[1][W]) = 0.
In our method as described in Section 3, instead of constructing Y

0[1] directly by using all possible deriv-
atives, we actually used the point k ¼ ðW ½1�; Y ½1�Þ, which is the Newton’s iterate starting from the point
h 0 = (W[1],Y[1]) along the Y-direction. The point k ¼ ðW ½1�; Y ½1�Þ is still quadratically close to B(W,Y) = 0
along the Y-direction, but with W = W[1], which is quadratically close to the true value, i.e., the W-coordi-
nate of the point x. Therefore, the quadratic rate for the convergence of the auxiliary parameter W in our
method (i.e., the two Newton’s steps (23) interlaced with the Newton’s step (27) for solving the constraint
(25)) can be intuited from the corresponding geometric construction (a! b, b! h, h 0 ! k and repeat) as
summarized in Fig. 2.

5.2. Spectral deferred correction

We now demonstrate the practicability of the spectral deferred correction framework. We evolve the same
system (with parameters given by Eq. (38)) for 16 ms using both the basic method (as described in Section 3) as
well as the spectral deferred correction (SDC) method (as described in Section 4) with a variety of time-steps
(DT = 0.0625–1 ms) to obtain solutions fY DT

Euler;W
DT
Eulerg and fY DT

sdc;W
DT
sdcg, respectively. The exact solution is

estimated by evolving the system with a sufficiently small time time-step (DT = 2�10 ms � 1 · 10�3 ms), and
this estimate is used to measure the errors,
ZDT
Euler ¼ kqexact � qDT

Eulerk2; X DT
Euler ¼ kW exact � W DT

Eulerk1;
ZDT

sdc ¼ kqexact � qDT
sdck2; X DT

sdc ¼ kW exact � W DT
sdck1;
respectively. In Fig. 1B, we plot the accuracy of the numerical solution as a function of the amount of time
taken to compute that solution. Here, time is measured in terms of the number of boundary value problems
solved, since each application of the BVP solver takes approximately the same amount of time. It is clear that
the spectral deferred correction framework allows for higher accuracy at a lower computational cost. We ob-
serve that, in our simulations, the greatest gain in efficiency is achieved with one or two passes of deferred
correction. More passes of deferred correction do increase the overall accuracy of the solution, but require
detailed spatial resolution of the residual near the boundary, and are not significantly faster than taking a
smaller time-step with fewer overall correction steps.
5.3. Predictions of kinetic theory

Finally, we demonstrate the usefulness of the kinetic moment equations for neuronal network dynamics as
an approximation to an ensemble of integrate-and-fire networks. We evolve an ensemble of 104 integrate-and-
fire neuronal networks each under independent Poisson input drive with the same rate, and compare the firing
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rate statistics of the integrate-and-fire network ensemble with those calculated using the kinetic theory. Each
integrate-and-fire neuronal network within the ensemble obeys Eq. (1), with parameters given by Eq. (38),
except for the input rate m, which is given by
Fig. 3.
identic
the val
(11). D
varyin
S = 0.
m ¼ m0 exp
1

4
sin

2pt
T
þ 2pt

T

� �2
 !" #

; ð39Þ
where m0 = 0.5 spikes/ms and T = 100 ms. The integrate-and-fire networks are evolved over 100 ms using an
efficient integrate-and-fire neuronal solver [28]. The ensemble-averaged firing rate per neuron of the integrate-
and-fire networks is compared with the firing rate for the corresponding kinetic theory (Eqs. (13) and (14)),
which is solved using the methods of Sections 3 and 4. As shown in Fig. 3, the comparison demonstrates that
the kinetic theory is dynamically accurate in capturing the firing rate of the integrate-and-fire neuronal net-
works under time varying drive. Note that the fast oscillations in the input (39) are approaching the time-
scales of fast input to a cortical network. For reference, we compare these two firing rate curves with the firing
rate obtained using the mean rate model [7,8]. The firing rate of the mean rate model is obtained by solving the
following algebraic equation:
m ¼
1þ�g

sv log
�gð�r��EÞ

ð�h��rÞþ�gð�h��EÞ




 


 ; if �g > �h��r
�E��h

0; otherwise

8<: ð40Þ
with
�g ¼ f mþ Sm:
Dynamical accuracy of kinetic theory – the firing rate m(t). (Thin solid line: simulation result averaged over an ensemble of 104

ally structured networks. The firing rate is measured using a bin size of 1 ms. The upper and lower boundaries of the gray area mark
ues one-standard deviation away from the mean, measured from the ensemble of the 104 networks. Thick solid line: kinetic theory
ashed line: mean-driven limit (40).) The parameters for the network (1): N = 100 purely excitatory I& F neurons driven by a time-

g input rate m(t) = m0exp[0.25sin(2pt/T + (2pt/T)2)], where m0 = 0.5 spikes/ms, T = 100 ms. f = 0.5 ms, sv = 20 ms and sg = 0.1 ms,
125.
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Fig. 4. Dynamical accuracy of kinetic theory – instantaneous probability density function of the membrane potential. Plotted is the pdf at
time t = 29.375 ms. (The upper and lower boundaries of the gray area mark the values one-standard deviation away from the mean,
measured from the ensemble of the 104 networks. Thick solid line: kinetic theory (11).) See Fig. 3 for network parameters.
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Note that the rate equation (40) is derived under the mean-driven approximation [6–8]. As is demonstrated in
Fig. 3, the kinetic theory clearly provides a much better approximation of the actual ensemble firing rate than
the mean rate theory does. The mean-driven approximation fails dramatically for small firing rates
(<15 spikes/s). As shown in Fig. 4, it can be seen that the kinetic theory also accurately predicts instantaneous
voltage distributions of individual neurons within the ensemble. In general, the kinetic theory well captures the
corresponding integrate-and-fire ensemble for a wide range of parameter values. However, it can become less
accurate if the small jump approximation becomes invalid or the firing statistics from the other neurons in the
network is far from Poisson, which can arise from the limit of very large S and very small N.

It should be noted that accurately evolving the 104 integrate-and-fire ensembles took about 500 times longer
than accurately evolving the kinetic theory equations for the sample network given by Eq. (38). To obtain an
extra significant digit in the integrate-and-fire ensemble firing rate (and thus substantially differentiate the
ensemble response from the response calculated using kinetic theory), we would need approximately 106 indi-
vidual ensembles, and the computation would take about 50,000 times as long as the analogous kinetic theory
computation. Clearly, the computational advantage of the kinetic theory equations (for computing statistical
information) becomes even more pronounced as the number of neurons N within each ensemble increases.

6. Conclusion

The algorithms we describe in Sections 3 and 4 can successfully evolve the kinetic theory equations within a
variety of regimes, and are useful for efficiently determining the statistical properties of ensembles of integrate-
and-fire neuronal networks. Moreover, the essential elements in our algorithm are rather general, therefore,
our algorithms can be extended to other types of PDEs with nonlinear boundary conditions.
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